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Course Description

This course, taught for the MIT Educational Studies Program (ESP)
SPLASH! Weekend, 2006, provides one answer to the question, “When is
this ever used?” by exploring a few interesting applications of high school-
level mechanics to automobile racing. Since the course was designed for two
2-hour sessions, a working knowledge of introductory classical mechanics is
assumed. Although relevant concepts and equations are briefly reviewed, the
bulk of the course consists of applying concepts to a handful of particular
racing examples. The material is split into two parts: Part I deals generally
with external forces: linear and centripetal acceleration, friction, gravity, lift
(downforce) and drag, and a mass-spring-damper model of suspension. Part
II deals with internal forces: engine dynamics, power and torque curves,
power transmission and gear ratios, and a look at electric vehicles. Finally,
students get a chance to explore racing physics concepts within the very
realistic physics engine of Gran Turismo 4, a racing simulator produced by
Sony Computer Entertainment, Inc. for the Playstation 2 game console.
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1 Physics

Physics provides us with a number of helpful definitions and relations, such
as the concept of displacement, velocity, and acceleration which allows us to
describe numerically the motion of any mass.

In his Second Law of Motion, Newton defined a force as a ‘change in
momentum’ of a system, and from there we can derive the equation

F = ma

We would need a textbook to properly treat physics and all the equations.
Instead, we will merely present, without proof, a number of equations that
we may find useful for this class.

Centripetal Force: a force that holds a mass in circular motion with con-

tant radius, r, and tangential speed, vt. Fc = m
v2

t

r

Friction: a force that resists motion between two surfaces, propotional to
the normal force, FN , between the surfaces and the coefficient a friction, µ
(depends on the materials). Ff = µFN

Work: a force exerted over a distance. W = F · s

Power: the rate at which work is done. P = ∆W
∆t

= F · v

Torque: a twisting equivalent to force. A force applied a given distance
r from an axis of rotation creates a torque on the system. Think of a tire
iron loosening up a lug nut. The force is applied at a distance away from the
nut, creating a torque that loosens it. T = r × F

Aerodynamic Forces: Drag and lift are the epitome of non-linear phenom-
ena. For the classic problem of a fluid (air or water, for example) flowing
over a surface (like a car or an airplane wing) an agreed-upon equation for
the force is

F = C
(

1

2
ρv2A

)
Where F is the force due to drag (or lift), C is the so-called coefficient

of drag (or lift), ρ is the density of the fluid ( 1.25kg/m3 for air), v is the
velocity of the air (or the car), and A is the area exposed to drag or lift. For
a vehicle, this area is essentially the frontal area.
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The coefficient of drag is not a calculated value. Instead it is determined
through experiments. There are a number of tables that provide the coeffi-
cient of drag for a number of geometries and known objects.

Figure 1: Coefficient of drag for different objects. (Source: Ford Motor Co.
*National Research Council of Canada, **NASA)

For more information on drag and lift, we recommend the website
http://www.aerodyn.org/Drag/.

These equations are useful when analyzing translational motion (i.e. along
a line). Rotational systems, though different, are very similar. Table 1 is a
summary of the analogous terms in the two domains.

Variable Translational Rotational
Displacement s θ
Velocity v = s/t ω = θ/t
Acceleration a = v/t α = ω/t
Force ‘Force’ F = ma ‘Torque’ T = Iα
Power P = F · v P = T · ω

Table 1: Analogous terms in translational and rotational systems.
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Part I

External Forces

2 The “Perfect” Turn

In racing, time is made and lost in turns. Cornering is critical and the path
we drive through a turn has a huge effect on how fast we can get through
a corner. This is because there is a natural limit to the cornering ability of
a car: friction. If the tires cannot supply enough friction to hold the car to
the turning radius, they will slip and control will suffer. In this section we
will explore ways to use the geometry of the turn to get the most out of this
frictional limit.

Consider the following: a particular 90◦ corner has a perfectly circular inner
radius, R1, and outer radius, R2, as shown in Figure 2 (a). We assume that
the car takes the turn at constant speed and follows a perfectly circular path
(assumptions that we will scrutinize below). In this case, the car obeys the
laws of circular motion and the centripetal force is the frictional force of the
tires holding the car in a circular path. The maximum centripetal force that
the tires can supply is given by

Ffriction = µmg = m
v2

t

r
.

The normal force is just the weight of the car, mg. However, mass cancels
from the equations, so the weight of the car does not matter to this analysis.
Also, we will assume a coefficient of static friction, µ, of 1.0. Solving for
vt gives the maximum speed at which the car can take a turn of radius r
without losing traction:

vt =
√

gr. (1)

This makes sense: the larger the turning radius, the faster we can take the
turn. The square root implies that if we quadruple the radius, for example,
we should be able to take the turn at twice the speed. g is the gravitational
acceleration (9.8m/s2 or 32ft/s2), and is more or less constant so long as we are
driving on Earth.

Returning to Figure 2 (a), two radii are already defined: R1 and R2. A
turning radius of R1 would imply that we hug the inside of the turn all the
way around, not the fastest path by any means. If we instead stay on the
outside of the turn all the way around, our turning radius is R2. Because
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R2 is greater than R1, Equation 1 says that this is the faster path - but not
the fastest. As you may already know, a faster racing line is generally an
“outside-inside-outside” path: starting from the outside edge of the track,
touching the inside edge about halfway through the turn (the “apex”) and
finishing on the outside again. This racing line can be approximated as a
circle that touches (is “tangent” to) the outside edges of the track and the
halfway point of the inside edge of the turn, with a radius of R3 as drawn in
Figure 2 (b).

(a) (b)

Figure 2: The 90◦ turn under consideration (a) and a large-radius racing line
through it (b).

Our task: Find an equation so that if we know R1 and R2, we can solve
for R3, the radius of the racing line. Once we know the radius, we can cal-
culate what the increase in speed is from Equation 1. To help solve for R3,
some construction lines are added to the drawing in Figure 3. Note the right
triangle created: the construction lines have reduced the question to a simple
trigonometric problem. (Convince yourself that the dimensions given on the
hypotenuse and leg of the triangle are correct.)

Since we know the 45◦ angle, as well as the side adjacent to it and the
hypotenuse, we can write the equation

cos(45◦) =
(

R3−R2

R3−R1

)
.

All that remains is to solve for R3,

R3 =
R1cos(45◦)−R2

cos(45◦)− 1
. (2)
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Figure 3: The turn with some construction lines added to help define the
geometry.

This give R3 in terms of R1 and R2, which is what we were looking for.
(Check for yourself that the algebra works out.) We will not prove it here,
but this formula can be generalized to non-90◦ turns by replacing cos(45◦)
with cos( θ

2
), where θ is the angle of the turn. (180◦ is an interesting case.

Can you see why?)

As is the case with many physics problems, we have gone through a lot
of geometric setup just to get to the interesting part. Now that we have a
mathematical way of looking at a racing line, we can evaluate just how much
faster it really is. To do so, let’s take an example of a 90◦ turn with an inside
radius, R1, of 150 feet and an outside radius, R2, of 250 feet. For reference,
we can calculate the maximum speed we could take the turn by following the
inner or outer radius using Equation 1:

vR1 =
√

(g)(R1) =
√

(32ft/s2)(150ft) = 69.3ft/s = 47.2mi/hr

vR2 =
√

(g)(R2) =
√

(32ft/s2)(250ft) = 89.4ft/s = 61.0mi/hr

As expected, the outside radius allows a higher speed through the turn. But
now we calculate the radius of the racing line using Equation 2,

R3 =
R1cos(45◦)−R2

sin(45◦)− 1
=

150ftsin(45◦)− 250ft

sin(45◦)− 1
= 491.4ft,

and we find the maximum speed we can hold at that radius,

vR3 =
√

(g)(R3) =
√

(32ft/s2)(491.4ft) = 125.4ft/s = 85.5mi/hr.
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There we have it: a gain of more than 24mi/hr through the turn!

Those of you who have been watching carefully may be tempted to call us
liars: Yes, the speed through the turn increases as we consider wider and
wider radii, but so does the distance. In fact, the speed only increases pro-
portionally to

√
r, while the distance, a fraction of a circumference, increases

proportionally to r (C = 2πr). So if we quadruple the radius of the turn,
the distance we must travel also quadruples, but our speed only doubles.
The time it takes to complete the turn, given by the distance divided by the
speed, doubles ! Is our analysis no good, then? On a track made up of all
turns (like a big circle, or some NASCAR ovals), maybe. Then, it makes
sense to just hug the inside line all the way around. But on a track with
straightaways, the time lost braking for a turn and accelerating back up to
speed after the turn are critical, more important than the time it takes to
actually get through the turn. So in most cases it makes sense to preserve as
much of the cars momentum as possible by finding the fastest line through
a turn.

We stress that this analysis is an approximation only, and the real “per-
fect” turn depends on many other factors. The above paragraph is just one
example. The assumption that we take the turn at constant speed is also un-
realistic; braking and acceleration happen throughout. Consider the concept
of the “late apex,” well-known to race drivers, where it is better to brake
later and longer coming into a turn, take a tighter radius at first, touch the
inside of the turn after the midpoint, and accelerate out on a very wide path
(see Figure 4). Besides the more qualitative reasons (better visibility coming
out of the turn, less chance of running off the outside of the track), there is
a good physical basis for this. Depending on the exact conditions, cars can
usually apply nearly the maximum allowable braking force (before locking
up the wheels) all the way into a turn, known as “threshold braking.” Aero-
dynamic drag also helps slow the car down during the approach to a corner.
Coming out of a turn, however, the car must fight aerodynamic drag and will
usually reach its engine’s power limit at some point. After that point, the
tires will no longer be applying maximum frictional force. In other words,
it generally takes less time for the car to slow down than to speed up. This
asymmetry prompts the “late apex,” which sacrifices some additional brak-
ing for a straighter, faster, and longer path on which to accelerate up to speed.

The right line through a turn also depends a lot on what comes before
and after that turn. In a chicane or s-turns, exit speed from the final turn is
most important (especially if it is followed by a long straightaway). It makes
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Figure 4: The “late apex” line.

sense, then, to take slower lines through the earlier turns in order to set up
a fast line through the last one. In general, cornering is very much driven
by knowledge of the track and the car, and is developed through practice.
To model turning physically, many more factors than the ones we considered
must be taken into account. (Gran Turismo does a fairly good job of model-
ing these factors in its physics engine, but it is not a perfect representation
of real life.) Physics offers a lot of good approximations, and the analyis we
covered can help us understand cornering, but it is important to realize that
the real situation can often be more complex than our model.

3 Case Study: Car Suspension

Advanced Material: A non-trivial car design problem is the suspen-
sion system. An integral part of handling capabilities in an automobile, the
suspension has remained nearly unchanged for almost one hundred years.
Below is the suspension in a Honda Accord 2005 Coupe.

The goal of a suspension system is both control and comfort. The suspen-
sion should absorb the shock of the bumpy road. We can simplify our analysis
somewhat by considering the pretty accurate suspension model shown in Fig-
ure 6. The image on the left is a graphical representation of the suspension.
The mass is a quarter of the total mass of the car (since there are four wheels)
connected to a spring and a damper (shock absorber), both of which have
well-defined physical models and constitutive equations (we leave it to your
physics textbook to explain these in detail). We also model the tire as a
spring.

On the right is a diagram with some constants defined. Do not be fooled
by the simplicity of the drawing. This problem is actually quite difficult!
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Figure 5: Suspension for a Honda Accord 2005 Coupe.

(a) (b)

Figure 6: (a) Model for a suspension. (b) Diagram with variables defined.

Closed form solutions for the response of the car to an arbitrary input are
impractical and entail messy differential equations. Instead, computer pro-
grams such as MatLAB are used.

The following plot is an output from a MatLAB script. It attempts to
give a sense of how the suspension system reacts to an input (the large graph
in the bottom) such as a speed bump. Notice how the response lasts longer
than the input.
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Figure 7: Effects of system constants on the suspension response. For each
parameter the values plotted are 1 through 5, with red being 1.

Note for example the affect of changing the spring constant (top right
graph). As the spring is made stiffer (black curve = softest, red curve =
stiffest), more of the bumpiness in the road is transfered to the car, making
for a rougher ride. However, stiffer springs might also be desireable because
they reduce the amount of “body roll” a car experiences in a turn, making it
feel more responsive. Racing teams attempt to find a balance between these
characteristics of the car that works well on each track.

4 Can an F1 car drive on the ceiling?

This has perhaps become the trademark example of our Racing Physics
course, and the closest we will get to a Mythbusters physics approach. The
myth is simple: It has often been stated that an F1 car has enough downforce
from its aerodynamic geometry that it could literally drive upside down on

10



the ceiling at high enough speeds. By “ceiling,” we mean an inverted race
track with all the same characteristic of a regular track except that grav-
ity now pulls you away from the pavement. It certainly has never been
attempted. Cars have done loops, but in these cases it is the centripetal nor-
mal force of the track that holds them in circular motion around the loop.
What we are talking about is sustained driving on a flat surface. To deter-
mine if it is physically possible, we will have to draw from a lot of different
concepts from both parts of this course. But don’t worry: all of the formulas
are simple enough to learn on the fly (no pun intended).

A good place to start would be to consider all the vertical forces on the
car. Figure 8 (a) shows the scenario in question and Figure 8 (b) shows a
partial free body diagram of the F1 car with only vertical forces.

(a) (b)

Figure 8: An F1 car in a precarious position (a) and a partial free body
diagram showing only vertical forces (b).

The first of the vertical forces acting on the car is Fg, the force of grav-
ity, which can be easily found if we know the mass of the car, Fg = mg.
Gravity acts downward, as usual, but is now pulling the car away from the
road instead of towards it. We also know that there is some aerodynamic
force acting on the car. This force on a regular track is referred to as the
“downfore” because it holds the car to the road for increased traction. The
“downforce,” FL, is now acting upwards since it is dependent on the orienta-
tion of the aerodynamic surfaces of the car, so it still acts to hold the car to
the road. Finally, the road can exert some normal force, FN . There are two
conditions that can exist: If the net vertical force on the car (excluding the
normal force) is downward, then the road doesn’t have to exert any force on
the car, since the car will promptly fall away from the upside down road and
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come crashing to the ground. If, though, the upwards aerodynamic force, FL,
is greater than the force of gravity, Fg, the road will exert whatever normal
force is necessary to keep the car from passing through it. In other words,
the vertical acceleration of the car will always be zero because it will remain
at the height of the road. Therefore, since Fvertical = mavertial, the sum of
the vertical forces must be zero as well.

Before we go any further, we will need the formula for calculating “down-
force,” and some specifications for the F1 car. Recall that the vertical aero-
dynamic force can be related to the so-called “coefficient of lift” via the
equation

FL = (CL)
(

1

2
ρv2A

)
.

The density of air, ρ, about 1.2kg/m3. (Can you see why this is in the equa-
tion? What would happen if we tried this on the moon?) v is the velocity
of the car. The faster it goes, the more downforce we’re going to get. A is
the frontal area of the car, the area that the air has to go around as the car
slices through it. We will use A = 1.68m2, a number typical of an F1 car1.
CL is the lift coefficient, which is determined by the geometry of the car,
including its front and rear wings. We will use CL = 2.2, also an estimate for
F1 cars. We will also need to know the mass of the F1 car. For that, we will
use m = 600kg, the F1 speficication minimum allowable weight (including
the driver). Now that we’ve got all that out of the way, let’s calculate the
vertical forces for an F1 car going 200 kilometers per hour (124MPH or 56m/s):

Fg = mg = (600kg) (9.8m/s2) = 5, 880N,

FL = (CL)
(

1

2
ρv2A

)
= (2.2)

(
1

2

)
(1.2kg/m2) (56m/s)2

(
1.68m2

)
= 6, 954N.

The upwards-acting “downforce,” FL, wins out over gravity, meaning that
even at this relatively low speed (for an F1 car), the car could stick to the
ceiling at least momentarily. To have zero net vertical force, the road must
exert a normal force, FN = FL − Fg = 1, 074N, pushing back down against
the car. (If the road was not there, the car would momenetarily “fly” up-
wards!) This myth has passed its first test of feesibility.

As the skeptics will tell you, this, by itself, is not sufficient to prove that

1Specifications for an F1 car are not easy to find and are not usually published by
racing teams. The data used in the following analysis comes from Race Car Aerodynam-
ics, by Joseph Katz, Ph.D, c©2002 Robert Bently, Inc. An exerpt is available online at
http://www.bentleypublishers.com/gallery.htm?code=GAER&galleryId=768.
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an F1 car could drive continuously on the ceiling. If the car is just barely
being held to the upside-down track, the tires will not have any traction and
will not be able to fight the high drag force acting on the car at these speeds.
The car will quickly slow down, losing its “downforce” and falling off the
track. So, it seems that in order to test the critereon that the F1 car be able
to drive on the ceiling continuously, we will need to go back to our free body
diagram and include horizontal forces this time, as in Figure 9.

Figure 9: The F1 car’s free body diagram, now with horizontal forces in-
cluded.

In the free body diagram, the car is moving to the left. The two horizontal
forces acting on the car are the drag force, FD, trying to slow the car down,
and the force that the tires exert to propel the car forward. Remember that
this forward propulsion comes from the force of static friction between the
tires and the pavement, so we call it Ff and note that it has a maximum
value given by, Fmax

f = µFN , where µ is the static friction coefficient between
the tires and the pavement. We will use µ = 1.0, a low estimate for an F1
car. That means that our frictional force is simply equal to the normal
force, FN , of the road pushing down on the car, which we already calculated
to be 1, 074N. To calculate the drag force, we use the same formula as for
calculating the “downforce,” except we replace the coefficient of lift, CL, with
the coefficient of drag, CD, somewhere around 0.7 for an F1 car:

FL = (CD)
(

1

2
ρv2A

)
= (0.7)

(
1

2

)
(1.2kg/m2) (56m/s)2

(
1.68m2

)
= 2, 213N.

The drag force is larger than the maximum frictional force the tires can
apply. The car will be slowed down by the air resistance until it falls off
our upside-down track! So is the myth busted? Not quite: We can certainly
squeeze more speed out of an F1 car. This will mean more downforce holding
the car to the track. In turn, the track will push back with more normal
force, allowing the tires more traction and more frictional force to propel
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the car forward. But, there will also be more drag force at higher velocity.
Before we waste our time doing the math, lets consider if the benefits of
more downforce will outweight the extra drag. The coefficient of lift, 2.2, is
significantly higher than the coefficient of drag, 0.7. This means that for a
given increase in velocity, we will get a larger increase in downforce than in
drag by a factor of 2.2

0.7
= 3.14, referred to as the “lift to drag ratio” of the car.

So going faster could potentially give us the edge we need to drive on the
ceiling. Let’s re-calculate all our forces with a new speed of 300 kilometers
per hour (186MPH or 83m/s):

FL = (CL)
(

1

2
ρv2A

)
= (2.2)

(
1

2

)
(1.2kg/m2) (83m/s)2

(
1.68m2

)
= 15, 277N.

The downforce nearly doubles. We are off to a good start. The weight
of the car remains unchanged at 5, 880N. To balance out the vertical forces,
the road must now push down with a normal force FN = FL−Fg = 9, 397N.
Since we assumed a static friction coefficient of 1.0, the maximum frictional
force the tires can apply to propel the car forward is exactly the same as the
normal force the road now exerts on the tires, Ff = FN = 9, 397N. Now the
moment of truth: If the new drag force is less than the maximum frictional
force the tires can supply, then the car will have enough traction to drive
drive continuously upside-down:

FD = (CD)
(

1

2
ρv2A

)
= (0.7)

(
1

2

)
(1.2kg/m2) (83m/s)2

(
1.68m2

)
= 4, 860N.

The tires can lay down enough forward force to fight the drag force and
more! To be sure, we should check to see that the engine itself can supply
enough power to the wheels. (We suspect that it can, since 300 kilometers
per hour is well within the reach of an F1 car.) To do this, we just have to
know the power of the engine and the formula Power = Force · V elocity.
(We will officially meet power in Part II of the course.) An F1 engine can
produce roughly 700 horsepower, or in SI units roughly 500,000 Watts of
power (imagine 5,000 100-Watt lightbulbs!). So we calculate,

Force =
Power

V elocity
=

500, 000W

83m/s
= 6, 024N.

This is less than the maximum frictional force the tires can supply, but
still greater than the drag force. So we won’t be able to peel out on the ceil-
ing (probably not a good thing anyway), but the engine can definitely supply
enough power to the tires to fight the drag force and keep the car moving
forward on the upside-down track. We have effectively proven that an F1
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car moving at 300 kilometers per hour can not only stick to the ceiling, but
continuously drive on it so long as it maintains speed. The extreme aerody-
namics of these cars make them exert much more than their own weight on
the road, which is what gives them their unique handling abilities at extreme
speeds.
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Part II

Internal Forces

5 Power/Torque Curves

Two of the most important specifications of a race car are its power and
torque. In the US, power is usually given in horsepower and roughly corre-
lates to the car’s overall ability to go fast (remember P = F · v). Torque,
given in foot-pounds (ft-lb) in the US, is more closely related to acceleration.
(Torque measures the twisting force of the engine output shaft, which goes
through the transmission and drive shaft to the wheel, causing them to exert
a fricitonal force on the ground, which in turn makes the car accelerate.) It
is important to note that when power or torque are cited as single number
(“Car X has 200 horsepower and 150 foot-pounds of torque”), these are the
maximum values for each. In actuality, power and torque vary depending on
how fast the engine is turning.

The power/torque curve shows the values of power and torque as they vary
with engine RPM, giving a more complete representation of an engine’s out-
put. They show the power and torque of the engine, before the transmission,
so they are the same no matter what gear the car is in. Figure 10 is an exam-
ple of a power/torque curve taken from Gran Turismo 42. It is for a Toyota
Altezza Touring Car (sold in consumer form as the Lexus IS in America).
Notice that the scale for the torque curve (0 to 297 in horsepower) is different
than the scale for the power curve (0 to 191 in ft-lb). Often, the two are plot-
ted on the same scale for simplicity. We’ve imported the data (freehand) into
a charting program and adjusted the scales to match. The result is Figure 11.

Notice that both torque and power are low at very low RPM. They in-
crease with RPM until some maximum value, then begin to decrease at very
high RPM. Torque peaks before power and in general is higher than power
in the low RPM range. This becomes important in when considering gear
changes, which we will look at below.

We won’t go into the operation of an internal combustion engine, but we
can use physics and a little bit of common sense to work out why the curves

2Gran Turismo 4 c©2005 Sony Computer Entertainment, Inc. All manufacturers, cars,
names, brands and associated imagery featured in this game are trademarks and/or copy-
righted materials of their respective owners.
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Figure 10: The power/torque curve of a Toyota Altezza Touring Car from
Gran Turismo 4.

Figure 11: The same power torque curve, but adjusted so that the scales of
each curve match.

look the way they do. As a starting point, consider an engine running at zero
RPM (i.e. not running). It obviously produces no power and no torque, and
so the two curves must start at a value of zero. As we increase the speed of
the engine, we are injecting more fuel and combusting it more often. This
increase in energy translates into a higher power output of the motor. The
power peaks at a particular RPM where the engine is “happy,” the timing
of mechanical and fluid (combustion) events is as good as it can get. If we
increase the RPM more, the speed of the pistons moving up and down in
the engine is faster than the fuel combustion can optimally achieve, so some
power is sacrificed. (Of course, if the engine gets going too fast, other prob-
lems like heat and vibration become limiting factors as well. This is the
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purpose of the “redline,” to alert you that the engine is being stressed too
much.)

One thing we haven’t mentioned is how the torque and power curves are
related to each other. The assumption has been that they are independent
quantities that depend on engine characteristics. But remember from our
defininitions of power that power and torque can be related by P = τ · ω,
where τ is the torque and ω is the angular velocity (speed of rotation) of the
engine. So, in theory, if we know the torque and the speed of the engine, we
should know its power. The only somewhat tricky part to this is that the
angular velocity, ω, has to be in radians per time. (A radian is a unitless
measure of angular rotation used to simplify many calculations. For us, it
is only important to know that there are 2π radians in one full revolution.)
As an example, let’s try to find the power of a car that produces 150 ft-lb of
torque at 5,000 RPM:

P = τ · ω
= (150ft · lb) (5, 000rev/min) (2πrad/rev)

= 4, 712, 389ft·lb·rad/min.

To finish the calculation, we need to convert to horsepower. The conversion
ratio is 1hp = 33, 000ft·lb/min. We can ignore radians because it is a unitless
measure (which is what makes it useful). So,

P = (4, 712, 389ft·lb/min)

(
1

33, 000
hp/ft·lb/min

)
= 143hp.

So that car, at that particular speed and torque, must be producing 143
horsepower. We can generalize this to say the torque and horsepower are
always related in the same way, regardless of the car and the speed. What
then of our power/torque curves? Figure 12 shows what happens if we apply
the same calculation to every point on the Toyota Altezza’s torque curve. As
it happens, the power curve is almost the one we could calculate from the
torque curve. There are some differences, which may be due to the fact that
the two could have been measured independently in real life, but as far a
physics is concerned, knowing one curve is enough to define fully the output
of the motor.

Another interesting phenomenon that can now be explained is the fact
that all power/torque curves where both are plotted on the same scale inter-
sect at around 5,250 RPM. If we ignore units (which we are implicitly doing
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Figure 12: The Altezza power/torque curve, with the calculated power from
the torque curve shown as well.

by graphing both curves on the same scale), then we can see that this comes
from the same calculation as we carried out above:

HP = (Torque)(RPM)(2π)(
1

33, 000
).

Horsepower will exactly equal torque when RPM cancels out the conver-
sion factors. To do this, it will have to be equal to their reciprocal. That
is,

RPM =
33, 000

2π
= 5, 252.

The Altezza curves (when graphed on the same scale in Figure 12) in-
teresect at approximately this number. If we had done the analysis with any
other car’s curves, the intersection point would be the same.

6 Gearing

As we saw in the previous section, power and torque have a maximum value
in a particular range of RPM. This is often referred to as a car’s “power
band,” and it varies depending on the car. Since the power band is fairly
narrow for an internal combustion engine, using it effectively requires that
we have multiple gear ratios to choose from for transmitting the power to
the road, hence, shifting. Before we look at how shifting helps us stay inside
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a car’s power band, let’s take a quick look at the physics of gears:

If a car engine’s output shaft were hooked directly to the wheels, it would
provide very little force for pushing the car forward. The Altezza Touring
Car’s engine outputs a maximum of just under 200 ft-lb of torque. If that
torque were acting directly on the wheels of the car, the force provided can
be calculated simply (remember τ = r × F ). The radius, r, is that of the
wheel and tire. If the radius is 14 inches, we can plug in and solve for the
force:

τ = r × F ⇒ F =
τ

r
=

200ft · lb
(14in)

(
1
12

ft/in

) = 171lb.

A (strong) human being could push the car with that amount of force.
And if the car were going up even a slight incline, the force of gravity would
cancel out this force. All is not lost, though, because we have another com-
ponent of power to draw from: the engine’s speed. If it were directly driving
the car’s wheel at 7,500 RPM (the point of maximum torque), how fast would
the car be going? We can calculate this easily by multiplying by the circum-
ference of the wheel (this is how far the car travels in one revolution) and
then converting to a sensible unit:

V = (7, 500rev/min) (2π · 14in/rev)

(
1

63, 360
mi/in

)
(60min/hr) = 625mi/hr!

From practical experience, we know that we will never reach these speeds.
The goal, then, is to sacrifice the engine’s high speed for more torque. This
is exactly what the transmission does through the process of gear reduction.
There are two stages of reduction in a typical car: the transmission gears
and the final drive gear. The transmission gears are the ones that the driver
can select (or, in an automatic, the car’s computer chooses). The final drive
gear is a characteristic of the car’s differential, the module which splits the
engine’s power between the left and right wheels. Figure 13 is a simplified
model of a car’s gear reduction stages.

Without going into gear theory too much, we will just mention going from
a smaller gear to a larger gear (one with fewer teeth to one with more teeth)
translates to an increase in torque and a decrease in speed. To understand
this, think about the geometry of the gears: the smaller gear must turn many
times for the larger gear to turn once. However, the bigger gear has a larger
radius, and thus the torque (τ = r×F ) is also larger. The “gear ratio” refers
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Figure 13: The power transmission from engine to drive shaft involves two
gear stages, one at the transmission itself and one at the differential.

to the exact amount of torque increase and speed decrease we get. For exam-
ple, a 30-tooth gear meshing with a 90-tooth gear of the same pitch (size and
spacing of teeth) gives a gear ratio of 90

30
= 3. The ratio is always given with

the output gear on the top of the fraction and the input gear on the bottom.
The torque increase in this case would also be a factor of 3: τout = 3τin. The
speed changes by the opposte: a factor of 1

3
, so that ωout = 1

3
ωin. Note that

no matter what the gear ratio is, power is conserved. (P = τ ·ω, the increase
in torque exactly cancels the decrease in speed, 3τ · 1

3
ω = τ · ω.)

Gear ratios can be “chained” together simply by multiplying them. For
example, if our transmission gear ratio is 3:1 and our final drive gear ratio is
4:1, the total gear ratio from the engine to the drive shaft is 12:1 (this can
also be written as 12

1
or simply 12). The torque increases by a factor of 12

and the speed decreases accordingly to 1
12

the engine speed.

We haven’t yet looked at the effect of having multiple gears to choose from.
Let’s return to the Toyota Altezza Touring Car and look at its trasmission
settings (an important option for tweaking in Gran Turismo 4). Figure 14
shows the table of gears, from 1st to 5th, as well as the final drive gear.

Given that this car’s engine supplies maximum power at around 8,500
RPM, let’s work out the straight-line speed at which we hit this maximum
power for each gear ratio. First, we divide the engine RPM by the total gear
reduction to get the RPM of the drive shaft. Then, we multiply by the wheel
circumference and convert to miles per hour as we did above:

V1 =
8, 500rev/min

(3.890) (4.100)
(2π · 14in/rev)

(
1

63, 360
mi/in

)
(60min/hr) = 44mi/hr
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Figure 14: The Altezza Touring Car’s gear ratio settings.

V2 =
8, 500rev/min

(2.504) (4.100)
(2π · 14in/rev)

(
1

63, 360
mi/in

)
(60min/hr) = 69mi/hr

V3 =
8, 500rev/min

(1.766) (4.100)
(2π · 14in/rev)

(
1

63, 360
mi/in

)
(60min/hr) = 98mi/hr

V4 =
8, 500rev/min

(1.320) (4.100)
(2π · 14in/rev)

(
1

63, 360
mi/in

)
(60min/hr) = 130mi/hr

V5 =
8, 500rev/min

(1.046) (4.100)
(2π · 14in/rev)

(
1

63, 360
mi/in

)
(60min/hr) = 165mi/hr.

For each successive gear, the speed at which we hit the maximum point
on the power curve gets higher and higher. For slower speeds, we get more
power out of the engine in lower gears, which can translate to faster acceler-
ation. For faster speeds, the higher gears keep us in the power band of the
car. From this, we can begin to lay out a shifting profile for the car. From
a stop to somewhere above 44 mph, we should be in first gear. Between 44
and 69 mph, we shift into second gear, dropping the engine to a lower RPM
so that we can go through the high part of the power curve again. We can
do this in between each peak power speed to always keep the engine in the
narrow range of RPM around the point of maximum power. Figure 15 shows
this graphically.

From a stop, we would go through the power curve once. The last point
on the curve is the engine redline, so we need to shift into second gear at this
point. The shift occurs at the first vertical line, somewhere near 45 mph. We
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Figure 15: Scaling the power curve for each gear ratio gives a visual repre-
sentation of what shifting does. Vertial lines indicate a shift point.

then follow the second gear power curve through the maximum point again.
We redline and shift up again at about 75 mph into 3rd gear. By doing this,
the engine is always outputting near max power (between 225 and 300 horse-
power for the Altezza). This shifting profile varies from car to car depending
on the shape of the power curve, the gear ratios, and the redline.

Racing teams will modify their gear ratios for each track. Short tracks with
many corners require more acceleration (torque) than speed, so the gear re-
duction for all gears will be higher. Imagine the shifting profile of Figure
15 being squished to the left. Shifts would occur at lower speeds for each
gear and the time spent in any particular gear would be less (more frequent
shifting). The higher gear ratios lead to an overall increase in torque (and ac-
celeration), but at the cost of speed (because power must be conserved). For
a long, fast track with lots of straightaways, smaller gear reductions would
be used to get more top speed out of the car. The shifting profile would be
stretched to the right, making shift speeds for each gear higher and leading
to less frequent shifting. The top speed of the car would increase, but the
peak torque and acceleration would decrease.

Tradeoffs like this are very common in physics, where conservation of en-
ergy is a fundamental consideration. Balancing torque and speed by tuning
the transmission ratios for a particular track is one of the most important
ways to increase lap tme.
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Advanced Material: Power and torque curves are one good way of
defining a car’s performance, but often other statistics like top speed and 0-
60 or 0-100 acceleration are given. We have vaguely stated that a higher gear
ratio leads to more torque and more acceleration, while a lower gear ratio
leads to more top speed. To give a bit more shape to these relationships, we
can combine a few of our basic equations,

P = F · v, F = ma,

to give a relationship that involves both velocity and acceleration:

F =
P

v
= ma.

We also know that acceleration is the rate of change of velocity with respect
to time, a = ∆v

∆t
. Acceleration is an instantaneous rate of change, though,

and has a different value at every point in time. The tool that we use to
solve equations like this is calculus, and the so-called “differential equation”
of interest is

P

v
= m

dv

dt
⇒ dv

dt
=

P

mv
.

We can apply the methods of calculus to our gearing profile, which gives us
power at a given speed, so that we have the entire right hand side of the dif-
ferential equation (assuming we know the car’s mass). Solving numerically
(i.e. with a computer) will result in a plot of the speed of the car at any
given time. With some modification to our computer program, we can also
add in effects like the traciton limit of the tires, the drag force, and the delay
involved when changing gears. The result will look something like Figure 16,
a rough computation for the Altezza Touring Car.

A ton of information can be picked up from this graph, including the 0-60
time (a bit over 5 seconds), the 0-100 time (around 12 seconds), the top speed
(61m/s or 136MPH, and the time to reach top speed (35-40 seconds). Once
the sequence of calculations that generates this graph is correct, it can be
repeated to test different gear ratios. More interestingly, if the equations are
good enough, the car’s properties (mass, coefficient of drag, etc.) accurate
enough, and the processor fast enough (to mimick “instantaneous” values),
you can run these and other calculations over and over again to produce
an accurate simulation of driving a race car. This is exactly how the Gran
Turismo 4 physics engine does it.
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Figure 16: A computed speed vs. time graph for the Altezza Touring car
with particular trasmission settings, accounting for estimated drag, traction
limits, and shift lag.

7 The Tesla Roadster

This being an MIT course, we could not pass up the opportunity to look
at one of the possible paths racing might take in the future. The world oil
situation is such that hybrid electric vehicles have become a viable consumer
alternative. Hydrogen fuel cell-powered cars seem primed to make a similar
transition from prototype to consumer product, but the infrastructure will
take longer to develop. Another alternative that hasn’t been in the media
much is the fully-electric “plug in” vehicle. Generally, alternative-power ve-
hicles have been tagged as small and underpowered, and particularly in the
case of the fully-electric vehicle, impractical due to long charging times and
short range. Whereas environmentally-aware consumers may still buy them,
these limitations have kept alternative-power vehicles out of the performance
market altogether.

There is no inherent reason, however, why electric motors are inferior to
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internal combustion engines. In fact, electric motors offer benefits that make
them in some ways more well-suited to racing than the internal combustion
engine. When the low power “green vehicle” design stereotype is lifted away
and an automobile is allowed to pursue the full potential of the electic motor,
the result can be very exciting. Enter the Tesla Roadster.

Tesla Motors is a Silicon Valley startup (part of their venture capital came
from Google and PayPal cofounders) devoted to making a performance elec-
tric vehicle available to the public 3. Having such a vehicle could help produce
more interest in electic cars and spark more development on the level of an
every-day vehicle. Their first model, the Tesla Roadster, will be delivered in
2007 (not prototypes - actual consumer vehicles). The price tag is a hefty
$100,000, but the performance does live up to the price.

The power plant of the Tesla Roadster is a 3-phase AC induction motor.
AC stands for Alternating Current and is the type of electricity that comes
in through a wall socket (although this is single phase). (Nikola Tesla was
the father of AC power distribution and invented the AC induction motor.)
Induction refers to the method by which torque is generated: Current pass-
ing through coils of copper wire in the motor create a magnetic field, which
in turn induces currents in more conductors on the rotor, the actual rotating
component of the motor. The currents are controlled so that the magnetic
field rotates, which then causes the rotor to rotate as well4.

We won’t go any further into the theory of electric motors (which can get
pretty complex) except to mention some of the characteristics that set them
apart from internal combustion engines. For one, they are a lot simpler me-
chanically. There is one moving part: the rotor. No pistons, valves, cams,
or timing belts are required and for that reason they can also be a lot more
efficient, reliable and durable (assuming the electrical system is made well).
They also have an extremely high power density (power generation compared
to their weight). The Tesla Roadster’s 248 peak horsepower motor weighs
just 70 lbs. Scaling up to higher power would be relatively easy, but as we
will soon see, a relatively low horsepower electric motor could outperform a
higher horsepower internal combustion engine anyway.

3Telsa Motors. Wikipedia, 2006. http://en.wikipedia.org/wiki/Tesla Motors.
4For more information on Tesla’s inventions, see the Wikipedia ar-

ticle at http://en.wikipedia.org/wiki/Nikola Tesla. For information
about electric motors, see http://en.wikipedia.org/wiki/Electric motor and
http://www.coolmagnetman.com/magacmot.htm.
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The key to the electric motor’s performance lies in its torque curve. Fig-
ure 17 shows the power and torque curve of the Tesla Roadster5. Whereas
an internal combustion engine delivers no torque at zero RPM, an electric
motor can and does. Try stopping a small electric motor, like one from a toy
car, with your hands. You’ll notice that even when the shaft is not rotating,
the motor still exerts a torque, trying to spin in your grip. In fact, electric
motors generally supply their maximum torque “at stall” (zero RPM). In
the Tesla Roadster, the torque stays high through a huge RPM range, past
8,000 RPM, and then begins to drop off more steeply. The engine redlines
at 13,500 RPM, significantly higher than most internal combustion engines.
(The small number of moving pieces help it to reach these high speeds with-
out tearing itself apart like an internal combustion engine might.)

Figure 17: The Tesla Roadster power/torque curves. Compare this with the
Altezza Touring Car curves in Figure 11. Notice the nearly constant torque
throughout a large range of RPM. Notice also that the intersection point is
still around 5,252 RPM, as we proved theoretically above.

What this torque curve translates to in terms of performance is blister-
ingly fast acceleration, even from a dead stop. (Remember, τ = r × F and
F = ma, so higher torque leads to higher force at the wheels, which in turn
leads to higher acceleration.) The Tesla Roadster claims a 0-60 time of 4
seconds, on par with supercars like the Lamborghini Murcielago. (It should
be noted that the Tesla Roadster isn’t unique in its ability to produce quick
acceleration with an electric motor. The GM EV1, featured in the movie

5These approximate power/torque curves are based on the figure on the Telsa Motors
performance page, http://www.teslamotors.com/performance/performance.php. They
are freehand approximations only and do not represent official data from Telsa Motors.
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Who Killed the Electric Car? was often criticized for lack of power although
it could do 0-60 in about 8 seconds, comparable to a 6-cylinder Ford Taurus6.)

Because of the Tesla Roadster’s wide power band and high redline, it needs
fewer gears to stay within its motor’s optimum RPM range. It has only two,
with gear ratios of 4.20:1 and 2.17:1, plus a final drive ratio of 3.41:1. Fig-
ure 18 shows the Telsa Roadster power curve, scaled for each gear. The top
speed of the Tesla Roadster is listed as over 130 mph. Top speed is more
dependent on power than on torque (remember P = F · v) and 250 hp is
nothing special in the performance world. But the Tesla Roadster can get
up to its top speed very quickly because of its low-RPM torque, and having
fewer gears means less time lost during shifting. The Tesla Roadster would
be particularly well suited, then, to a track with many turns and relatively
short straightaways, where acceleration is more important than top speed.

Figure 18: The gearing profile of the Tesla Roaster. Because of its wide
power band, it can get up to a top speed of over 130 mph with only two
gears. Compare this to the Altezza Touring Car’s gearing profile in Figure
15.

6General Motors EV1. Wikipedia, 2006. http://en.wikipedia.org/wiki/General Motors EV1.
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8 Concluding Remarks

Hopefully, this class has shown you that physics can and is applied in racing.
While our methods were sometimes a bit complicated, they were all based
on some fundamental equations of physics that come straight from your high
school physics courses. Complicated situations can be broken down into
simpler components, both in the quantitative sense (such as forces being re-
solved into vertical and horizontal components) and in the more figurative
sense (seeing what contributes to a physical situation, what can vary, what
can be ignored). Whether you go on to study physics as a pure science or in
the applied form of engineering, the ability to look at a complicated situation
with a “toolbox” of simpler building blocks will be essential. We hope you’ve
enjoyed this course and will pursue other intersting and enjoyable topics in
science and engineering. Feel free to contact us with questions about the
course material or about any other questions you may have.

Shane and Dayán
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